• Skip to main content

DistilGovHealth

DistilNFO GovHealth Advisory

  • Publications
    • Home
    • DistilINFO HealthPlan
    • DistilINFO HospitalIT
    • DistilINFO IT
    • DistilINFO Retail
    • DistilINFO POPHealth
    • DistilINFO Ageing
    • DistilINFO Life Sciences
    • DistilINFO GovHealth
    • DistilINFO EHS
    • DistilINFO HealthIndia
    • Subscribe
    • Submit Article
    • Advertise
    • Newsletters

Artificial Intelligence Helps Cut Down on MRI No-Shows

Share:

September 21, 2020

Artificial intelligence predictive analytics performs fairly well in solving complex operational problems – outpatient MRI appointment no-shows, especially – using a modest amount of data and basic feature engineering, and can help cut down on such no-shows, according to findings published in the American Journal of Roentgenology.

What’s convenient and beneficial about the data is that in many cases it’s readily retrievable from frontline IT systems that are commonly used in hospital radiology departments. It can also be readily incorporated into routine workflows, which the authors said can improve the quality and efficiency of healthcare delivery.

WHAT’S THE IMPACT?

To train and validate this model, the team of researchers extracted records of 32,957 outpatient MRI appointments scheduled between January 2016 and December 2018 from their institution’s radiology information system, while acquiring a further holdout test set of 1,080 records from January 2019. Overall, the no-show rate was 17.4%.

Want to publish your own articles on DistilINFO Publications?

Send us an email, we will get in touch with you.

After evaluating various machine learning predictive models developed with widely-used, open-source software tools, the team deployed a decision tree-based ensemble algorithm that uses a gradient boosting framework: XGBoost, version 0.80.

Roughly translated, this resulted in an intervention measure of phone reminders for patients with the top 25% highest risk of an appointment no-show, which was implemented over six months.

Six months after deployment, the no-show rate of the predictive model was 15.9%, compared with 19.3% in the preceding 12-month pre-intervention period – corresponding to a 17.2% improvement from the baseline no-show rate. The no-show rates of contactable and non-contactable patients in the group at high risk of appointment no-shows as predicted by the model were 17.5% and 40.3%, respectively.

The aim was not to produce a complex model, but rather a simple one that could be developed quickly, with minimal data processing.

THE LARGER TREND

Data published in 2016 showed that missed and open appointments cost the healthcare industry $150 billion annually. Providers have no-show rates between 5% and 30% nationwide. Each 60-minute open or no-show slot typically costs physicians $200.

A 2018 MGMA Stat poll found that when it comes to cutting down on patient no-shows and staff time spent confirming appointments, the most preferred and effective method is texting. Most medical groups said they already communicate with their patients via text, and of those that didn’t, many said they use an alternative such as email and phone call reminders.

Source: Healthcare Financenews

Coffee with DistilINFO's Morning Updates...

Sign up for DistilINFO e-Newsletters.

Just a little bit more about you...
PROCEED
Choose Lists
BACK

Related Stories

  • Google Continues Health Care Push With Telehealth, Health Insurance DealsGoogle Continues Health Care Push With Telehealth, Health Insurance Deals
  • State of Connecticut Launches of Livongo for Diabetes Management Program through State Health PlanState of Connecticut Launches of Livongo for Diabetes Management Program through State Health Plan
  • Billions in Estimated Medicare Advantage Payments from Chart Reviews Raise ConcernsBillions in Estimated Medicare Advantage Payments from Chart Reviews Raise Concerns
  • Physician proposals inspire new HHS pay models for primary carePhysician proposals inspire new HHS pay models for primary care
  • App makers are sharing sensitive personal information with Facebook but not telling usersApp makers are sharing sensitive personal information with Facebook but not telling users
  • CARIN Alliance Code of ConductCARIN Alliance Code of Conduct

Trending This Week

Sorry. No data so far.

About Us

DistilINFO is media company that publishes Industry news, views and Interviews. We distil the information for you – saving time and keeping you up to date on your interest areas.

More About Us

Follow Us


Useful Links

  • Subscribe
  • Contact
  • Advertise
  • Privacy Policy
  • Terms of Service
  • Feedback

All Publications

  • DistilINFO HealthPlan Advisory
  • DistilINFO HospitalIT Advisory
  • DistilINFO IT Advisory
  • DistilINFO Retail Advisory
  • DistilINFO POPHealth Advisory
  • DistilINFO Ageing Advisory
  • DistilINFO Life Sciences Advisory
  • DistilINFO GovHealth Advisory
  • DistilINFO EHS Advisory
  • DistilINFO HealthIndia Advisory

© DistilINFO Publications