The ability to manage population health and public health starts with data integrity.
Access to reliable, trustworthy data enables healthcare organizations to achieve complete patient views—bringing together all data, including social determinants of health, to more effectively treat patients and help them manage complex conditions. And, as the industry is quickly learning, access to accurate data during a public health crisis is crucial to contacting individuals who test positive for disease and containing the outbreak.
But recent surveys show providers, health plans and government agencies struggle to access the data they need to help vulnerable populations even in non-crisis scenarios:
- 30% of healthcare organizations struggle to exchange patient health records with other providers.
- 52% of hospitals do not use patient data from outside their electronic health record (EHR) because their systems’ workflows don’t support external data.
- 1 in 5 patient records are duplicate records, limiting the ability to establish accurate case histories.
And as COVID-19 ups the ante for data integrity, a Duke-Margolis Center for Health Policy report shows up to 50% (PDF) of COVID-19 lab reports are missing key contact information needed to alert individuals to their test results. This obstructs local and state health agencies’ efforts to investigate newly diagnosed disease, identify infection clusters, localize disease hot spots and match patient identification for clinical queries, according to the report (PDF), written by faculty and researchers for Duke as well as national leaders in healthcare and health policy.
Want to publish your own articles on DistilINFO Publications?
Send us an email, we will get in touch with you.
With the long-anticipated data interoperability rule now delayed due to the COVID-19 outbreak, how can healthcare organizations and public health agencies overcome data integrity challenges that present hurdles in health management—both publicly and at an individual level? Here are three vital approaches.
1. Strengthen data demographic verification using existing systems. The Duke-Margolis report points to three data elements that are commonly missing from medical records of individuals who undergo testing for COVID-19 through clinical laboratories, which perform 83% (PDF) of positive test results reported by the Centers for Disease Control and Prevention:
- Race/ethnicity
- Telephone number
- Address
At Verato, the experience of one of our colleague’s parents, who was exposed to COVID-19 while visiting an assisted living community, illustrates how easy it is for these data to fall through the cracks. The parent, whom we’ll call “Marie,” was directed to a drive-by testing site. While Marie completed a form with her date of birth, address and telephone number to give to the testing facility, the lab technician was hesitant to accept it, stating that she was told only the individual’s name and date of birth were needed. But these two identifiers alone don’t guarantee the right record will be matched to the right patient. Especially with common names like “Jennifer Smith,” providers can often have multiple instances of patients with the same name and a similar birth date in their system.
Source: Fierce Healthcare